# Unit 1, Lesson 4: Scaled Relationships

Let's find relationships between scaled copies.

### 4.1: Three Quadrilaterals (Part 1)

Each of these polygons is a scaled copy of the others.



- 1. Name two pairs of corresponding angles. What can you say about the sizes of these angles?
- 2. Check your prediction by measuring at least one pair of corresponding angles using a protractor. Record your measurements to the nearest 5°.

### 4.2: Three Quadrilaterals (Part 2)

Each of these polygons is a scaled copy of the others. You already checked their corresponding angles.



1. The side lengths of the polygons are hard to tell from the grid, but there are other *corresponding distances* that are easier to compare. Identify the distances in the other two polygons that correspond to *DB* and *AC*, and record them in the table.

| quadrilateral | distance that<br>corresponds to DB | distance that<br>corresponds to AC |
|---------------|------------------------------------|------------------------------------|
| ABCD          | DB = 4                             | AC = 6                             |
| EFGH          |                                    |                                    |
| IJKL          |                                    |                                    |

2. Look at the values in the table. What do you notice?

Pause here so your teacher can review your work.

3. The larger figure is a scaled copy of the smaller figure.



- a. If AE = 4, how long is the corresponding distance in the second figure? Explain or show your reasoning.
- b. If IK = 5, how long is the corresponding distance in the first figure? Explain or show your reasoning.

### 4.3: Scaled or Not Scaled?

Here are two quadrilaterals.



- 1. Mai says that Polygon *ZSCH* is a scaled copy of Polygon *XJYN*, but Noah disagrees. Do you agree with either of them? Explain or show your reasoning.
- 2. Record the corresponding distances in the table. What do you notice?

| quadrilateral | horizontal distance | vertical distance |
|---------------|---------------------|-------------------|
| XJYN          | <i>XY</i> =         | JN =              |
| ZSCH          | <i>ZC</i> =         | <i>SH</i> =       |

- 3. Measure at least three pairs of corresponding angles in *XJYN* and *ZSCH* using a protractor. Record your measurements to the nearest 5°. What do you notice?
- 4. Do these results change your answer to the first question? Explain.

Here are two more quadrilaterals.



DATE

5. Kiran says that Polygon *EFGH* is a scaled copy of *ABCD*, but Lin disagrees. Do you agree with either of them? Explain or show your reasoning.

## Are you ready for more?

All side lengths of quadrilateral MNOP are 2, and all side lengths of quadrilateral QRST are 3. Does *MNOP* have to be a scaled copy of *QRST*? Explain your reasoning.

# **4.4: Comparing Pictures of Birds**

Here are two pictures of a bird. Find evidence that one picture is not a scaled copy of the other. Be prepared to explain your reasoning.







PERIOD

## Lesson 4 Summary

When a figure is a scaled copy of another figure, we know that:

1. All distances in the copy can be found by multiplying the *corresponding distances* in the original figure by the same scale factor, whether or not the endpoints are connected by a segment.

For example, Polygon *STUVWX* is a scaled copy of Polygon *ABCDEF*. The scale factor is 3. The distance from *T* to *X* is 6, which is three times the distance from *B* to *F*.

2. All angles in the copy have the same measure as the corresponding angles in the original figure, as in these triangles.





#### DATE

These observations can help explain why one figure is *not* a scaled copy of another.

For example, even though their corresponding angles have the same measure, the second rectangle is not a scaled copy of the first rectangle, because different pairs of corresponding lengths have different scale factors,  $2 \cdot \frac{1}{2} = 1$  but  $3 \cdot \frac{2}{3} = 2$ .

