How do you find or approximate the point of intersection of two lines without using a graph?

In this lesson you will learn to find the x-coordinate of the intersection of two equations by making a table.

A solution is a value or set of values that make an equation true.

$$y = 2x$$

 $x=2$, $y=4$ TRUE!
 $x=4$, $y=8$ TRUE!
 $x=6$ $y=12$ TRUE!

A solution to a system of equations is a value that makes both equations true.

$$(-1,-3)$$

 $y=-x-4$ $y=2x-1$
 $-3=-(-1)-4$ $-3=2(-1)-1$
 $-3=-3$ $-3=-2$

The point where two lines intersect is on to both equations.

slope-intercept form

A Common Misunderstanding

Remember that in real-world problems, the slope of the equation is the amount that describes the rate of change, and the y-intercept is the amount that represents the initial value.

$$y=mx+b$$

A limo company charges a flat rate of \$50 plus an additional charge of \$25 per hour.

$$y=$25x + $50$$

Paradise y=.90x + 6.80

Geno's y=.65x + 7.30 LEARN

Now we make a chart to organize our data!

	4	6.	0	
	1	6	0	U
•		•		

toppings; y=total

We need two charts for two equations!

X	y=.90 + 6.80	У
0	y=.90(0) + 6.89	6.80
1	y=.90(10 + 6.80	7.70
(2)	y=.90(2) + 6.80	8.60

×	y=.65x + 7.30	У
0	y=.65(0) + 7.30	7.30
1	y=.65(1) + 7.30	7.95
(2)	v = (.5(2) + 7.30)	8 60

After adding two toppings, the pizzas will cost the same!

The pizzas cost the same!

In this lesson you have learned to find the x-coordinate of the intersection of two equations by making a table.

