

DATE

PERIOD

Student Task Statements

Lesson 12: Completing the Square (Part 1)

12.1: Perfect or Imperfect?

Select **all** expressions that are perfect squares. Explain how you know.

- 1.(x + 5)(5 + x)
- 2. (x + 5)(x 5)
- 3. $(x 3)^2$
- 4. $x 3^2$
- 5. $x^2 + 8x + 16$
- 6. $x^2 + 10x + 20$

12.2: Building Perfect Squares

Complete the table so that each row has equivalent expressions that are perfect squares.

standard form	factored form	
1. $x^2 + 6x + 9$		
2. $x^2 - 10x + 25$		
3.	$(x-7)^2$	
4. $x^2 - 20x + $	$(x - \)^2$	
$5. x^2 + 16x + $	$(x + \)^2$	
6. $x^2 + 7x + $	$(x + \)^2$	
$7. x^2 + bx + $	$(x + \)^2$	

DATE

PERIOD

12.3 : Dipping Our Toes in Completing the Square

One technique for solving quadratic equations is called **completing the square**. Here are two examples of how Diego and Mai completed the square to solve the same equation.

Diego:

Mai:

$x^2 + 10x + 9 = 0$	$x^2 + 10x + 9 = 0$
$x^2 + 10x = -9$	$x^2 + 10x + 9 + 16 = 16$
$x^2 + 10x + 25 = -9 + 25$	$x^2 + 10x + 25 = 16$
$x^2 + 10x + 25 = 16$	$(x+5)^2 = 16$
$(x+5)^2 = 16$	x + 5 = 4 or $x + 5 = -4$
x + 5 = 4 or $x + 5 = -4$	x = -1 or $x = -9$
x = -1 or $x = -9$	

Study the worked examples. Then, try solving these equations by completing the square:

1. $x^2 + 6x + 8 = 0$

2. $x^2 + 12x = 13$

3.
$$0 = x^2 - 10x + 21$$

NAME

DATE

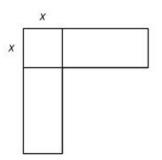
PERIOD

4. $x^2 - 2x + 3 = 83$

5. $x^2 + 40 = 14x$

Are you ready for more?

Here is a diagram made of a square and two congruent rectangles. Its total area is $x^2 + 35x$ square units.



1. What is the length of the unlabeled side of each of the two rectangles?

- 2. If we add lines to make the figure a square, what is the area of the entire figure?
- 3. How is the process of finding the area of the entire figure like the process of building perfect squares for expressions like $x^2 + bx$?

 $(x-7)^2 = 9$

NT	۸٦	<i>/</i> T	7
IN.	Aľ	VI 1	1

DATE

Lesson 12 Summary

Turning an expression into a perfect square can be a good way to solve a quadratic equation. Suppose we wanted to solve $x^2 - 14x + 10 = -30$.

The expression on the left, $x^2 - 14x + 10$, is not a perfect square, but $x^2 - 14x + 49$ is a perfect square. Let's transform that side of the equation into a perfect square (while keeping the equality of the two sides).

 One helpful way to start is by first 	$x^2 - 14x + 10 - 10 = -30 - 10$
moving the constant that is not a	$x^2 - 14x = -40$
perfect square out of the way. Let's	
subtract 10 from each side:	
	2 1 4 40 40 40

- And then add 49 to each side: $x^2 - 14x + 49 = -40 + 49$ $x^2 - 14x + 49 = 9$
- The left side is now a perfect square because it's equivalent to (x 7)(x 7) or (x 7)². Let's rewrite it:
- If a number squared is 9, the number x 7 = 3 or x 7 = -3 has to be 3 or -3. To finish up: x = 10 or x = 4

This method of solving quadratic equations is called **completing the square**. In general,

perfect squares in standard form look like $x^2 + bx + \left(\frac{b}{2}\right)^2$, so to complete the square, take half of the coefficient of the linear term and square it.

In the example, half of -14 is -7, and $(-7)^2$ is 49. We wanted to make the left side $x^2 - 14x + 49$. To keep the equation true and maintain equality of the two sides of the equation, we added 49 to *each* side.