My brother and I flip a coin to decide who washes dishes. If the coin is heads, I wash. If it is tails, he washes. However, for the last five days in a row, my brother has won.

How can I determine if he is using a fair coin?

In this lesson you will learn to test a hypothesis for a population parameter by using a simulation.

Let's Review

Population

Unknown parameter

Make a hypothesis

Core Lesson

Heads: I wash the dishes. Tails: He washes the dishes.

My hypothesis: The coin is fair.

If the hypothesis is true, is 5 heads in a row unusual?

I will use simulation to see how unusual it would be to get 5 heads in a row.

Simulation: A way to model random events

Simulations can be conducted using objects (drawing names, flipping coins, etc.), or random numbers (tables or calculators.)

/											-				
ſ	77921	06907	11008	42751	27756	53498	18602	70659	90655	15053	21916	81825	44394	42880	
L	99562	72905	56420	69994	98872	31016	711 94	18738	44013	48840	63213	21069	10634	12952	
L	96301	91977	05463	07972	18876	20922	94595	56869	69014	60045	18425	84903	42508	32307	
	89579	14342	63661	10281	17453	18103	57740	84378	25331	12566	58678	44947	05585	56941	
	85475	36857	53342	53988	53060	59533	38867	62300	081 58	17983	16439	11458	18593	64952	
L															
L	28918	69578	88231	33276	70997	79936	56865	05859	901 06	31595	01547	85590	91610	781 88	
L	63553	40961	48235	03427	49626	69445	18663	72695	521 80	20847	12234	90511	33703	90322	
L	09429	93969	52636	92737	88974	33488	36320	17617	30015	08272	8411	271 56	30613	74952	
1	10365	61129	87529	85689	48237	52267	67689	93394	01511	26358	851 04	20285	29975	89868	
1															

To design a simulation, we first need to determine the component to be repeated.

In my problem, the component is flipping a coin.

Next, we should identify how we will model the random occurrence of an outcome.

My possible outcomes are

Heads

There are many ways that I could model the outcomes:

- Bowl of red and green chips
- Random numbers: even digits representing heads and odd digits representing tails
- Random numbers: digits 0-4 representing heads and 5-9 representing tails

The third thing we need to determine is how we will simulate the trial, or sequence of events that we want to investigate.

For my problem, I will simulate flipping a coin 5 times and record whether or not I get 5 heads in a row.

Now we identify the response variable, which is the result of the trials.

In my problem, the response variable is whether the trial resulted in *all heads*.

Next we run several trials.

The more trials I run, the better!

The last step in a simulation is calculating the statistic based on the results of the simulation, by analyzing the response variable.

In my problem, I would calculate the proportion of the 50 trials in which we got 5 heads.

Core Lesson

Steps to Test a Hypothesis

- Determine the COMPONENT
- What are the OUTCOMES
- Design the TRIAL
- What is the RESPONSE VARIABLE
- Run the SIMULATION
- Calculate the STATISTICS
- Make a decision on the HYPOTHESIS

A Common Misunderstanding

The statistics that we obtain through our simulation will vary every time we do a simulation. We will use them to make an estimation of the population parameter, which is unknown.

I would then come up with a conclusion, such as, "Based on my simulation, I estimate that, on average, I should get 5 heads about "x" percent of the time."

I can use this conclusion to reject or fail to reject my hypothesis that the coin is fair.

In this lesson you have learned to test a hypothesis for a population parameter by using a simulation.

