

DATE

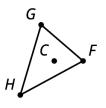
PERIOD

Student Task Statements

Lesson 3: Measuring Dilations

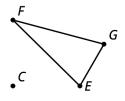
3.1: Dilating Out

Dilate triangle *FGH* using center *C* and a scale factor of 3.



3.2: All the Scale Factors

Here is a center of dilation and a triangle.

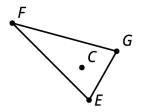


DATE

PERIOD

- 1. Measure the sides of triangle *EFG* (to the nearest mm).
- 2. Your teacher will assign you a scale factor. Predict the relative lengths of the original figure and the image after you dilate by your scale factor.
- 3. Dilate triangle *EFG* using center *C* and your scale factor.
- 4. How does your prediction compare to the image you drew?
- 5. Use tracing paper to copy point *C*, triangle *EFG*, and your dilation. Label your tracing paper with your scale factor.
- 6. Align your tracing paper with your partner's. What do you notice?

Are you ready for more?



- 1. Dilate triangle *FEG* using center *C* and scale factors:
 - a. $\frac{1}{2}$
 - b. 2

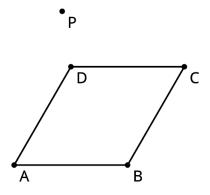
DATE

PERIOD

2. What scale factors would cause some part of triangle E'F'G'' to intersect some part of triangle *EFG*?

3.3: What Stays the Same?

1. Dilate quadrilateral *ABCD* using center *P* and your scale factor.



2. Complete the table.

	PA'	PB'	PC'	PD'
Ratio	PA	PB	РС	PD
Value				

- 3. What do you notice? Can you prove your conjecture?
- 4. Complete the table.

	B ' A '	<i>C'B'</i>	D ' C '	A'D'
Ratio	BA	CB	DC	AD
Value				

5. What do you notice? Does the same reasoning you just used also prove this conjecture?

DATE

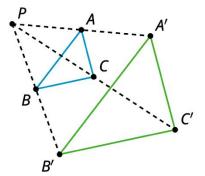
PERIOD

Lesson 3 Summary

We know a *dilation* with center *P* and positive *scale factor k* takes a point *A* along the ray *PA* to another point whose distance is *k* times farther away from *P* than *A* is.

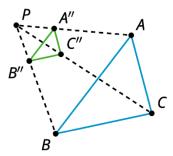
The triangle A'B'C' is a dilation of the triangle ABCwith center P and with scale factor 2. So A' is 2 times farther away from P than A is, B' is 2 times farther away from P than B is, and C' is 2 times farther away from P than C is.

Because of the way dilations are defined, all of these quotients give the scale factor: $\frac{PA'}{PA} = \frac{PB'}{PB} = \frac{PC'}{PC} = 2.$



If triangle *ABC* is dilated from point *P* with scale factor $\frac{1}{3}$, then each vertex in A''B''C'' is on the ray from P through the corresponding vertex of *ABC*, and the distance from *P* to each vertex in A''B''C'' is one-third as far as the distance from *P* to the corresponding vertex in *ABC*.

$$\frac{PA''}{PA} = \frac{PB''}{PB} = \frac{PC''}{PC} = \frac{1}{3}$$



The dilation of a line segment is longer or shorter according to the same ratio given by the scale factor. In other words, If segment AB is dilated from point P with scale factor k, then the length of segment AB is multiplied by k to get the corresponding length of A'B'.

$$\frac{A''B''}{AB} = \frac{B''C''}{BC} = \frac{A''C''}{AC} = k.$$

Corresponding side lengths of the original figure and dilated image are all in the same proportion, and related by the same scale factor k.